The heart of a scientific paradigmUnderstood as “accepted examples of actual scientific
practice – examples which include law, theory, application, and
instrumentation together – [that] provide models from which spring
particular coherent traditions of scientific research”. (Kuhn 1970,
10)
is a practice (“how understanding is being done”), its
foundation an ontology (“what there is to understand”). Any future
paradigm should reflect our best knowledge about how biological and
social systems actually understand the world instead of
phantasising about how understanding could or should work.
According to current researchSummarised, e.g., in Clark (2013) and Seth
(2021).
, understanding is generating, using and validating
predictive models of the world. A predictive model can be
implemented in various waysImportantly, it can be an implicit model,
i.e. a non-conceptual, embodied representation of a system’s
environment.
, depending on the system that has it: In bacteria, it is
implemented in hard-wired chemical reactions (“chemotaxis”); in
humans, it is a simulation running on our brain (“controlled
hallucination”Seth (2021), 17
); in civilisations, it is their cultural technēHaslanger (2019)
(“social
construction”).
Conventional ontologies don’t reflect this emerging understanding of
understanding: They are based on our manifest image of the world“[T]he framework in terms of which man came to be aware
of himself as man-in-the-world” (Sellars 1963, 7). Sellars describes its
objects as follows: “Thus we are approaching an answer to the question,
‘what are the basic objects of the manifest image?’ when we say that it
includes persons, animals, lower forms of life and ‘merely material’
things, like rivers and stones.” (ibid., 9) See Ladyman & Ross
(2007, 3–5) for a thorough critique of ontologies derived from this
image.
, abstracting from it only to a certain degree – they
posit things, events or processes that exist in space and time and that
interact causally as we experience everyday things to interact in space
and time. But our manifest image is the product of our brains’
simulations and of social construction – it cannot claim to have
anything to say about what there really is to understand. Its
features are an explanandum, not an explanans. For a more reliable
starting point we must, again, look to science.
The best and most current physics tells us that space and time, and
a fortiori everything that we imagine to exist in space and
time (things, events, processes), cannot be fundamental to reality.Nima Arkani-Hamed makes a very convincing case for this
in his public lectures, e.g. in Arkani-Hamed (2017).
They emerge from something deeper, from what there
really is.
Thus an adequate ontology has to discard space and time (and with it
things, events and processes) and aim to describe this deeper reality.
To do so, we can start with the basic fact that there is difference in
the world – that “something can be distinguished from everything
else”Friston (2019), 4, who develops a formally rigorous
framework based on an (albeit implicit) ontology similar to the one
outlined here. The same point is made by René Thom (1975, 1): “Whatever
is the ultimate nature of reality […], it is indisputable that our
universe is not chaos. We perceive beings, objects, things to which we
give names. These beings or things are forms or structures endowed with
a degree of stability […].”
. We call such distinguishable somethings
systems: groups of interdependent items forming a coherent
whole, defined by their boundary, i.e. by what is and what is not part
of them. Each item that is part of a system can itself be understood as
a system. This means that our ontology will be about a hierarchy of
systems, up to the world as the system of all systems. And since we
want our ontology to be as parsimonious as possibleThere are long-running debates in academic philosophy
whether parsimony should be an unqualified optimisation target for
ontologies. I believe it should – if it is
combined with a simultaneous optimisation for productivity.
, it will be about nothing else.
Note that this ontology doesn’t privilege any single level of
description – there is no fundamental reality, no “true” system (apart
from the world as a whole). It’s systems all the way down – and up: An
elementary particle is just as real as a biological cell, a dog as real
as a family, a culture as the climate. What will be privileged
are parsimonious descriptions: accounts describing systems on the
informationally most efficient level. In this ontology, maximum
parsimony goes formidably well with maximum diversity of entities.This is very similar to Don Ross‘s “Rainforest Realism”
(Ross 2000), which is a realist interpretation of Daniel Dennett’s “real
patterns” (Dennett 1991), based on information-theoretic efficiency.
Another parallel is Hoel’s (2017) work on how higher-level causation
emerges from microphysical reality due to an increase in effective
information.
Now, since we have discarded space and time as not fundamental, systems in this abstract and fundamental sense cannot be said to exist in space and time. But how and where do they exist?
The most parsimonious way to think about this is to just assume what
our best models of systems assume. From physics to forecasting
our most advanced models are captured in some form of mathematics, so
they strictly only assume what they need to run their mathematics: a state spaceMore technically, we “infer just that fundamental
structure and ontology that is required by the dynamical laws” (North
2013, 188). An example for this is a Hilbert space in
which equations describe vectors or operators.
. Systems thus minimally exist as sets of states in a
state space. State spaces are topological spaces, or more precisely manifolds, of which
the states are the constituent points. So, extrapolating from what our
models need to work, what there really is are systems existing as
structures in topological spaces.
What we really want to understand are patterns of system behaviour. How would such an ontology help us do that?
For any system, exhibiting patterns of behaviour just means tending
to be in certain states. These patterns thus form “basins
of attraction” in the system’s state space: topological structures
defined by its attractors, i.e. by
topological singularities that shape the topological space around them
and define possible state trajectories through it.See Abraham & Shaw (1992) for an excellent visual
and DeLanda (2002) for a very clear conceptual introduction to these
ideas.
As systems exist in exactly the states their attractors
define, we can say they are these attractor-defined topological
structures.Juarrero (1999, 156): “A system’s identity is captured
in the signature probability distribution of its dynamics.”
Understanding patterns of behaviour, then, is
topologically describing the defining attractors.This is what Manuel DeLanda calls topological
thinking, the term in the essay’s title. His explication of
Deleuze’s dynamical process ontology (DeLanda 2002) is based on ideas
similar to the ones outlined here. Topological thinking is being adopted
in a wide range of disciplines, albeit mostly without explicit
ontological reflection. See for example the shift towards geometric
descriptions in fundamental physics (from Hamiltonian
mechanics to the so-called amplituhedron and
“positive geometries”),
Joscha Bach’s automata-generated “global fractal”,
Karl Friston’s Free Energy
Principle and its vector gradients, the manifold
hypothesis in machine learning, attractor landscapes from
molecular biology and genetics to climate and earth system science, and
Dave Snowden’s “energy
gradients”.
With this, we have come full circle:
Topological structures are not only something very abstract and far removed from our Manifest Image, but also something we can actually imagine. Our brain has evolved to perceive the world to exist in space and time (a fact that needs to be explained), and it can construct topological structures as abstractions from space and time that still retain a quasi-visual quality.
Thus we can use topology to describe highly abstract and complex facts about the world in a very efficient and explicit, but even more importantly concrete and tangible way. We can use our ontology to generate not only less familiar, but also more accessible models.
So if we accept how we really understand things, understanding what there really is means describing the world at a very high level of abstraction in a very tangible way: describing systems in topological terms.
This should be the practice at the heart of our next paradigm.Methods to be derived from this core practice could
range from mathematical modelling and visualisation techniques through
scale-free abstractions like Markov blankets, gradient flows and
self-organised criticality to de-familiarisation strategies and the
induction of psychosis-neighbouring states “at the edge of chaos” that
enhance pattern recognition. Possible containers for these practices
range from hard science through the facilitation of distributed
cognition to the arts and subcultural experimentation.
References
- Abraham, R. H., Shaw, C. D. (1992): Dynamics: The Geometry of Behavior
- Arkani-Hamed, N. (2017), “The Doom of Spacetime: Why It Must Dissolve Into More Fundamental Structures”, Talk at the Philosophical Society of Washington, 1/12/2017
- Clark, A. (2013), “Whatever next? Predictive brains, situated agents, and the future of cognitive science”, Behavioral and Brain Sciences, 36(3), 181-204
- DeLanda, M. (2002), Intensive Science and Virtual Philosophy
- Dennett, D. C. (1991), “Real patterns”, Journal of Philosophy 88(1), 27-51
- Friston, K. (2019), “A free energy principle for a particular physics”, arXiv:1906.10184
- Haslanger, S. (2019), “Cognition as a Social Skill”, Australasian Philosophical Review, 3(1), 5–25
- Hoel, E. P. (2017), “When the Map Is Better Than the Territory”, Entropy 19(5), 188
- Juarrero, A. (1999), Dynamics in Action: Intentional Behavior as a Complex System
- Kuhn, T. S. (1970), The Structure of Scientific Revolutions, 2nd edition
- Ladyman, J., Ross, D. (2007), Everything Must Go
- North, J. (2013): “The Structure of a Quantum World”, in: Ney, A., Albert, D. Z. (eds.), The Wave Function, 184–202
- Ross, D. (2000), “Rainforest Realism”, in: Ross, D., Brook, A., Thompson, D. (eds.), Dennett’s Philosophy: A Comprehensive Assessment, 147–168
- Sellars, W. (1963), “Philosophy and the Scientific Image of Man”, in: Science, Perception and Reality, 1–40
- Seth, A. (2021), Being You: A New Science of Consciousness
- Thom, R. (1975), Structural Stability and Morphogenesis (English translation)
Acknowledgements
I am grateful to Glenda Eyoang and Gregor Groß for comments on drafts of this essay.