An Attractor Defines a Stable System

#proposition #stub5 mentions

Since the “states that will actually be observed in [a] System are the Attractors”Abraham & Shaw (1992), 13

, we can identify any system as we observe it with its attractors. In other words:

A system’s identity is captured in the signature probability distribution of its dynamics.Juarrero (2000), 41. This similar to how Manuel DeLanda takes attractors not as the essence of a system, but a set of “concrete universals” that give it its identity (DeLanda 2002).

References

Mentions